免费下载
网站简介

找论文变得更简单!

帮找论文

当前位置:

重点论文网    教育论文    教育学论文    小学数学思想及其教学途径
创建时间:05-20

小学数学思想及其教学途径

 

摘要:数学思想是数学的灵魂,数学的精髓。新课程标准把数学思想作为小学数学教学的一个重要组成部分,其重要性和地位得到了正式的确认。本文介绍了小学数学中的几种常见的数学思想,结合心理学分析了小学生内化数学思想的过程与特点,并提出了小学数学思想的教学途径。
关键词:小学数学  数学思想  学习过程  教学途径     
正文:
2011年6月,《基础教育课程改革纲要(试行)》的颁布标志着我国新一轮的课程改革的开始。《小学数学课程标准》的颁布是我国小学数学教育发展历程中具有里程碑意义的大事。《小学数学课程标准》总体目标规定,学生通过义务教育阶段的学习能够“获得适应未来社会生活和进一步发展所必须的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。”数学思想作为小学数学的教学目标第一次明确地提了出来,数学思想的地位和重要性得到了正式的确认。日本教育家和数学家米山国藏曾说:“学生在学校学到的数学知识。在进入社会,几乎没有什么用,因而这种作为知识的数学,通常在出校门后不到一两年就忘掉了,然而不管他们从事什么工作,那种铭刻与头脑的数学精神和数学思想却长期地在他们的生活和工作中发挥着作用。”数学思想是数学的核心、数学的实质。学生掌握数学思想不仅可以让学生轻松学到知识,让教师提高教学质量,还可以提高学生数学能力、数学素养,学会学习,从而为终身学习和可持续发展奠定基础。加强小学数学思想的教学既是数学教学改革的新视角,是新课程改革的要求,也是数学现代化的必然要求。反观我国小学数学教学的现状,在新课程改革以来,数学思想在小学受到了一些教育工作者的重视,在具体的实践中取得了一定的效果,但其程度还不够深,范围还不够广。更多的是教师重视基本知识、基本技能的训练,而忽视了蕴含其中的数学思想的教学,学生只是机械地学习知识,而未领悟到数学的实质、数学的精髓。因此,现阶段在小学数学的教学中加强数学思想的教学显得尤为重要。
一、    数学思想的根本内涵和基本特征
(一)数学思想的根本内涵
思想是客观存在反映在人的意识中经过思维活动而产生的结果。数学思想是“指现实世界的空间形式和数量关系在人的意识活动中经过思维活动而产生的结果,它是对数学知识和方法的本质认识,是对数学规律的理性认识。” 数学思想是“人们对数学科学研究的本质及规律的深刻认识。它是指导学习数学、解决数学问题的思维方式、观点、策略、指导原则。”数学思想比一般的数学概念具有更高的抽象和概括水平,并且更深刻、更本质。它作为对数学知识进一步的提炼、概括后的一种对数学内容的本质认识,使得学生所学知识不再是零碎的知识点,也不再是解决问题的刻板套路和个别的一招一式,这就为学生形成有序的知识链,进行有意义的学习以及把数学知识结构内化为认识结构起到了十分重要的基础作用。因此,数学思想能使学生领悟数学的真谛,懂得数学的价值,学会数学思维,能把知识的学习与培养能力、发展智力有机地统一起来。总之,数学思想是教学中所蕴含的一般思维规律,是数学的灵魂,是数学的核心,是数学发现的源泉,是解决问题的钥匙。
(二)数学思想的基本特征
1、指导性。数学思想作为对具体知识的提炼、概括,作为一种认知策略和操作程序,是数学的真谛、数学的核心。因此,数学思想具有指导性,它是研究数学和解决问题的指导思想,是数学思维的策略。当我们研究数学和解决问题时,总是寻找某种思想与方法,得到方向和途径。数学思想能使我们从中受到启发,使我们迅速找到方向和突破口,从而轻松解决问题。
2、抽象性。数学是一个符号化的世界,符号是数学的语言。数学运用特制的抽象符号语言,在数学推理中,从前提到结论,每一推理步骤都是用符号进行的,所得到的结论也是用数学公式来表达的,是学具有抽象性。数学思想是人们对数学研究的本质及规律的深刻认识,它不是直接写在教材中的具体的数学知识,而是隐藏在知识中无形的、潜在的东西,是对数学本质的认识。它作为一种思想,具有高度的概括性与抽象性。
3、应用性。数学思想是数学的灵魂,是数学的精髓,数学思想具有广泛的应用性,它不仅能应用于数学各分支、各部分,运用于数学的实践活动中,还可以应用到其他的自然科学和社会科学中。正如华罗庚所说:“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学。”因而,也无处不用数学思想。
二、    小学常见的几种数学思想
小学数学是一门学习简单数量关系和几何图形的课程。小学的数学知识直观、浅显、简易,在这些数学知识中,蕴含着许多与高等数学相同的数学思想。同时,小学阶段是学生身心不断发展的时期。在这一阶段,小学生的可塑性极强,是很多观点、态度、习惯形成的重要时期。在小学进行数学思想的教学具有可行性。在小学数学的教学中有意识地渗透数学思想不仅可以使学生领悟数学的真谛,学会“数学”地思考和解决问题,还可以促进学生终身学习,学会学习,实现可持续发展,这既是教育现代化的必然要求,也是教育的实质。小学生是身心发展处于一定阶段的人,其认知发展水平有限,思维、注意、知觉、记忆、语言等发展都还不完善。而数学思想的种类繁多,要想把所有的数学思想教给学生也是不现实的。因此,我认为小学生在学习数学的过程中应该掌握以下几种数学思想。
(一)    数形结合的思想
    数与形是数学中最基本的两种研究对象,也是整个数学发展过程中的两块基石,在一定的条件下,数与形可以优势互补,相辅相成。“数形本是相倚依,焉能分作两边飞?数缺形时少直观,形缺数时难入微。数形结合百般好,隔离分家万事休。几何代数统一体,永远联系莫分离。”这是华罗庚教授对数学结合思想的深刻、透彻的阐释。数形结合思想,其实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,实现抽象概念与具体形象、表象的联系和转化,化难为易,化抽象为直观。它表现为:(1)以形辅数,对于抽象的数学问题,

最新论文

网站导航

热门论文